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Organization

1. Quantum Gravity: Conceptual Setting.

2. A brief introduction to Loop Quantum Gravity (LQG) as a whole;

3. An illustrative example of recent advances:

A bridge between theory and observations of the early universe;

4. Brief Summary.

This is a broad overview: I will summarize the work of MANY researchers.
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1. Quantum Gravity: Conceptual Setting

Einstein’s resistance to accept quantum mechanics as a fundamental theory is well
known. However, he had a deep respect for quantum mechanics and was the first
to raise the problem of unifying general relativity with quantum theory.

“Nevertheless, due to the inner-atomic
movement of electrons, atoms would have to
radiate not only electro-magnetic but also
gravitational energy, if only in tiny amounts. As
this is hardly true in Nature, it appears that
quantum theory would have to modify not only
Maxwellian electrodynamics, but also the new
theory of gravitation.”

Albert Einstein,
Preussische Akademie Sitzungsberichte, 1916
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Why is the problem still open?

• Physics has advanced tremendously over the last century but the the problem
of unification of general relativity and quantum physics still open. Why?

• No experimental data with direct ramifications on the quantum nature of
Gravity. (Recall: The first tests of full nonlinear general relativity came in 2015
through gravitational waves, ∼ 100 years after Einstein’s discovery of the theory!)
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Why is the problem still open?

• Physics has advanced tremendously over the last century but the the problem
of unification of general relativity and quantum physics still open. Why?

• No experimental data with direct ramifications on the quantum nature of
Gravity. (Recall: The first tests of full nonlinear general relativity came in 2015
through gravitational waves –100 years after Einstein’s discovery of the theory!)

• But then this should be a theorist’s haven! Why isn’t there a plethora of
theories?
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Why is the problem still open?

• From the LQG standpoint, the real reason is the following:
In general relativity, gravity is encoded in spacetime geometry. Most spectacular
predictions –e.g., the Big-Bang, Black Holes & Gravitational Waves– emerge from
this encoding. Suggests: Geometry itself must become quantum mechanical. How
do you do physics without a spacetime continuum in the background? Need new
concepts and new mathematical tools. We learned how to lift the anchor that tied
us to a background spacetime and sail the open seas relatively recently.

• Several voyages in progress:
Non-commutative geometry, twistors, Regge Calculus, Euclidean quantum gravity,
Causal sets, Asymptotic safety and Causal Dynamical triangulations, AdS/CFT
conjecture of String Theory, Loop Quantum Gravity, ...

Because there are no direct experimental checks, approaches are driven by
intellectual prejudices about what the core issues are and what will “take care of
itself” once the core issues are resolved.
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Evolution of Ideas: Parallel Developments

Because there are no direct experimental checks, approaches are driven by
intellectual prejudices about what the core issues are and what will “take care of
itself” once the core issues are resolved. This sounds strange at first. Isn’t science
meant to be objective?

That taste and style have so much to do with
physics may sound strange at first, since physics
is supposed to deal objectively with the physical
universe. But the physical universe has structure,
and one’s perception of this structure, one’s
partiality to some of its characteristics and
aversion to others, are precisely the elements that
make up one’s taste. Thus it is not surprising
that taste and style are so important in scientific
research.

Chen Ning Yang
Selected papers with Commentary 1945-1980
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Illustrations of “Taste and Style”

? String Theory: Developed by HE theorists. ‘Unification’ Central;
Supersymmetry, higher dimensions, & -ve cosmological constant at its foundation;
Extended objects, rather than point particles; a natural UV cut-off

? LQG: Developed by Relativists. Non-perturbative methods and ‘background
independence’ Central; based on quantum Riemannian geometry; hence an in-built
UV cut-off.

• Current Mainstream Thrusts:

? String theory: “The Strange Second Life of String Theory” by K.C. Cole
(IAS website): “String theory has so far failed to live up to its promise as a way to
unite gravity and quantum mechanics. At the same time, it has blossomed into
one of the most useful sets of tools in science.”

? LQG: Focus has continued to be on the long-standing issues in quantum gravity
itself. Ongoing concrete results on: Problem of time; Taming the big bang;
Pre-inflationary dynamics and large scale anomalies in CMB; Graviton propagator
and n-point functions in a theory without a background spacetime; ...
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Organization

1. Quantum Gravity: Conceptual Setting. X

2. A brief introduction to Loop Quantum Gravity (LQG) as a whole;

3. An illustrative example of recent advances:

A bridge between theory and observations of the early universe;

4. Brief Summary.

This is a broad overview: I will summarize the work of MANY researchers.

Short Review: AA & Bianchi, Rep. Prog. Phys. 84, 042001 (2021).

Introductory YouTube Video (75 minute long):
The Story of Loop Quantum Gravity - From the Big Bounce to Black Holes.
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2. LQG: A New Syntax for all of Physics
• At the core of General Relativity (GR) is Einstein’s outrageous idea: Gravity is
a not a force but a manifestation of curved spacetime. As a result GR needed a
new syntax for all of classical physics: Riemannian Geometry.

• LQG Viewpoint: Geometry is a physical entity like matter. Therefore, it too
has ‘atomic structure’: Quantum gravity needs an even deeper syntax, now for all
of known physics: Quantum Riemannian Geometry. It was systematically
developed by a very large number of researchers in the 1990s.

Creation of this syntax was guided by two observations:

(1) A central lesson of GR is that there are no background fields: Everything, including
spacetime geometry is dynamical. No spectators in the cosmic dance!

(2) In all non-gravitational fundamental interactions the fundamental ‘mediating field’ is

a connection – a derivative operator rather than a metric– that serves as the vehicle to parallel

transport fundamental matter fields of the theory (electrons in QED and quarks in QCD). Can

we express GR as a theory of connections rather than of metrics? (Fascinating episode involving

Einstein and Schrödinger!) If so, we can use the powerful non-perturbative techniques of gauge

theories at the quantum level.

When combined, these guiding principles turn out to be surprisingly powerful.
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Emergent space-time

Classical theory: The ‘obvious’ Hamiltonian theory of connections (with two local

degrees of freedom as in GR) based on these two principles is remarkably simple: all
equations are low order polynomials in the connection and its conjugate
momentum. Therefore, the theory is very well suited for ‘quantization’ using non-
perturbative techniques of gauge theories. But its physics is very different from
QED or QCD because there is no background metric. In fact it is GR in disguise!!
The metric emerges as a ‘composite field’ in terms of the ‘fundamental’ variables
of gauge theory, just as nuclei are composite objects in QCD.

LQG perspective: Spacetime Continuum of GR is an approximation. It emerges

only on “coarse graining”, i.e., probing physics at
scales L� `Pl. Then we can ignore the atomic
structure of geometry. Analogous to looking an
impressionist painting from afar. Note that
Rproton ≈ 1020`Pl!! Therefore we can feely use
Einstein’s continuum approximation even in the
highest energy experiments at CERN.

But at a fundamental level, quantum geometry has an inbuilt discreteness, and it
dominates the physics of the extreme universe near singularities of GR.
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Flavor of Quantum Geometry
• In LQG there is a precise & detailed mathematical
framework for quantum geometry. It provides the syntax
to describe how GR is modified at the Planck scale.
Fundamental excitations of spatial geometry are
polymer-like; 1-dimensional. Einstein’s continuum arises
only on coarse graining. Literally, the fabric of space is
woven by 1 dimensional quantum treads, in a precise
manner. Credits: Alex Corichi

• Geometrical observables such as areas of physical
surfaces and volumes of physical regions are
represented by well-defined operators as in standard
quantum mechanics. Their values are quantized like
the discrete energy levels of atoms! The minimum
non-zero value ∆̊ ∼ 5.17`2Pl ≈ 8.3× 10−66 cms. ∆̊
turns out to play a key role in the definition of
quantum curvature & in quantum Einstein equations.

But discreteness is sophisticated. Area-levels crowd exponentially, so the
continuum limit is approached rapidly!
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3. LQG and The Big Bang

• In General Relativity, we have the (Friedmann-Lemâıtre)
solution to Einstein’s equations that correctly captures the
large scale structure of our expanding universe. However, if
evolved back in time, all physical quantities diverge at a
finite time, and physics just comes to an abrupt halt. Fabric
of space-time is violently torn apart at this Big Bang
singularity!

Credits: Pablo Laguna

• However, already in the 1945 edition of Meaning of
Relativity, Einstein cautioned against attributing fundamental
significance to the Big Bang:
“One may not assume the validity of field equations at very
high density of field and matter and one may not conclude that
the beginning of the expansion should be a singularity in the
mathematical sense.”

• It is now widely believed that Big Bang is a prediction of General Relativity but
beyond its domain of validity; it ignores quantum physics which becomes crucially
important in the very early universe. In LQG, therefore, singularities like the Big
Bang regarded as gates to Physics Beyond Einstein.
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The Big Bounce of LQC

• Quantum geometry of LQG corrects Einstein’s equations.
As we go back in time, these corrections create a brand new
‘repulsive force’ in the Planck regime where matter densities
are ρPl ∼ 1090 × ρNucl and space-time curvature is ∼ 1076

times the curvature at the horizon of a solar mass black
hole!! This force is negligible until we reach the Planck
regime but then rises extremely rapidly and overwhelms the
classical gravitational attraction and causes the universe to
bounce. The big bang is replaced by a big bounce! Credits: Cliff Pickover

• All physical quantities remain finite at the bounce. Space-time curvature is
large ∼ 62× `−2

Pl but finite; matter density has an absolute upper bound;

ρsup = 18π/(G2~∆̊3) ≈ 0.41ρPl !. As area gap ∆̊→ 0, ρsup →∞ as in GR.
Away from the Planck regime, when ρ . 10−4ρPl, GR becomes a good
approximation. At the ‘onset’ of inflation, ρ ∼ 10−11ρPl. So we can safely use a
classical, continuum space-time during inflation, but not before!

• The area gap ∆̊ of LQG serves as the microscopic parameter that sets the scale
for macroscopic observables, e.g., ρcrit = const/∆̊3.
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Another paradigm shift:
NEW Meaning of the Big Bang

n Now in mainstream cosmology, `Big Bang' refers not to an initial 
singularity but to a hot phase of the early universe (say at the end of 
inflation)! Short YouTube Video: The New Meaning of Big-Bang

n https://www.youtube.com/watch?v=U7kvjTRWtw\&feature=youtu.be
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From fundamental theory to observations
• Natural question: Conceptually, the LQG bounce is attractive. But how would
ever know that there was a big bounce rather than a big bang? Our information

about the early universe comes from observations of the Cosmic Microwave Background (CMB).

Currently, the most commonly used model to account for these observations assumes that the

universe underwent an early phase of exponential expansion, called inflation. During this phase,

inevitable quantum fluctuations at the Planck scale are stretched enormously and become

observable in the CMB.

• Since the curvature at the big-bang is infinite, the curvature radius is zero. At
the bounce it is non-zero and has a universal value LLQC ≈ 7.9`Pl. So the CMB
modes which have a wavelength λ < LLQC are not affected by the pre-inflationary
curvature but those with λ > LLQC do. (Just as I don’t feel earth’s curvature when I am

walking, but it played an important role in my flight from the US to Germany!) These turn
out to be the modes with longest wavelength in CMB.

• Interestingly predictions from the standard inflationary model fits very well with
observations for most observable modes, but for the longest observable modes,
there are some anomalies. Statistical significance of any one anomaly is low but
two or more anomalies, taken together, imply that if the standard inflationary
scenario is correct then we live in a very exceptional universe. Therefore the
anomalies and mechanisms to alleviate them have drawn significant attention. 17 / 35



But are these effects relevant for observations?
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June 5, 2015
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ABSTRACT

We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using ob-
servations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature,
but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from
the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find
excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad
range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness,
kurtosis, multi-normality, N -point functions, and Minkowski functionals indicate consistency with Gaussianity, while
a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a
peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected
with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the
large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a poste-
riori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a
significance that is dependent on the details of the approach. We perform the first examination of polarization data,
finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations.
Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and
provide our most thorough view of the statistics of the CMB fluctuations to date.

Key words. cosmology: observations – cosmic background radiation – polarization – methods: data analysis – methods:
statistical
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servations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature,
but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from
the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find
excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad
range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness,
kurtosis, multi-normality, N -point functions, and Minkowski functionals indicate consistency with Gaussianity, while
a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a
peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected
with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the
large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a poste-
riori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a
significance that is dependent on the details of the approach. We perform the first examination of polarization data,
finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations.
Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and
provide our most thorough view of the statistics of the CMB fluctuations to date.

Key words. cosmology: observations – cosmic background radiation – polarization – methods: data analysis – methods:
statistical
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1. Introduction

This paper, one of a set associated with the 2015 release
of data from the Planck1 mission (Planck Collaboration I
2015), describes a set of studies undertaken to determine
the statistical properties of both the temperature and po-
larization anisotropies of the cosmic microwave background
(CMB).

The standard cosmological model is described well by
the Friedmann-Lemaître-Robertson-Walker solution of the
Einstein field equations. This model is characterized by a
homogeneous and isotropic background metric and a scale
factor of the expanding Universe. It is hypothesized that
at very early times the Universe went through a period
of accelerated expansion, the so-called “cosmological infla-
tion,” driven by a hypothetical scalar field, the “inflaton.”
During inflation the Universe behaves approximately as a
de Sitter space, providing the conditions by which some of
its present properties can be realized and specifically re-
laxing the problem of initial conditions. In particular, the
seeds that gave rise to the present large-scale matter distri-
bution via gravitational instability originated as quantum
fluctuations of the inflaton about its vacuum state. These
fluctuations in the inflaton produce energy density pertur-
bations that are distributed as a statistically homogeneous
and isotropic Gaussian random field. Linear theory relates
those perturbations to the temperature and polarization
anisotropies of the CMB, implying a distribution for the
anisotropies very close to that of a statistically isotropic
Gaussian random field.

The aim of this paper is to use the full mission Planck
data to test the Gaussianity and isotropy of the CMB as
measured in both intensity and, in a more limited capacity,
polarization. Testing these fundamental properties is cru-
cial for the validation of the standard cosmological scenario,
and has profound implications for our understanding of the
physical nature of the Universe and the initial conditions
of structure formation. Moreover, the confirmation of the
statistically isotropic and Gaussian nature of the CMB is
essential for justifying the corresponding assumptions usu-
ally made when estimating the CMB power spectra and
other quantities to be obtained from the Planck data. In-
deed, the isotropy and Gaussianity of the CMB anisotropies
are implicitly assumed in critical science papers from the
2015 release, in particular those describing the likelihood
and the derivation of cosmological parameter constraints
(Planck Collaboration XI 2015; Planck Collaboration XIII
2015). Conversely, if the detection of significant deviations
from these assumptions cannot be traced to known system-
atic effects or foreground residuals, the presence of which
should be diagnosed by the statistical tests set forth in
this paper, this would necessitate a major revision of the
current methodological approaches adopted in deriving the
mission’s many science results.

∗ Corresponding author: A. J. Banday anthony.banday@irap.
omp.eu
1 Planck (http://www.esa.int/Planck) is a project of the Eu-
ropean Space Agency (ESA) with instruments provided by two
scientific consortia funded by ESA member states and led by
Principal Investigators from France and Italy, telescope reflec-
tors provided through a collaboration between ESA and a sci-
entific consortium led and funded by Denmark, and additional
contributions from NASA (USA).

Well-understood physical processes due to the inte-
grated Sachs-Wolfe (ISW) effect (Planck Collaboration
XVII 2014; Planck Collaboration XXI 2015) and gravita-
tional lensing (Planck Collaboration XIX 2014; Planck Col-
laboration XV 2015) lead to secondary anisotropies that
exhibit marked deviation from Gaussianity. In addition,
Doppler boosting, due to our motion with respect to the
CMB rest frame, induces both a dipolar modulation of
the temperature anisotropies and an aberration that cor-
responds to a change in the apparent arrival directions of
the CMB photons (Challinor & van Leeuwen 2002). Both
of these effects are aligned with the CMB dipole, and were
detected at a statistically significant level on small angular
scales in Planck Collaboration XXVII (2014). Beyond these,
Planck Collaboration XXIII (2014, hereafter PCIS13) es-
tablished that the Planck 2013 data set showed little evi-
dence for non-Gaussianity, with the exception of a number
of CMB temperature anisotropy anomalies on large angu-
lar scales that confirmed earlier claims based on WMAP
data. Moreover, given that the broader frequency cover-
age of the Planck instruments allowed improved compo-
nent separation methods to be applied in the derivation of
foreground-cleaned CMB maps, it was generally considered
that the case for anomalous features in the CMB had been
strengthened. Hence, such anomalies have attracted consid-
erable attention in the community, since they could be the
visible traces of fundamental physical processes occurring
in the early Universe.

However, the literature also supports an ongoing debate
about the significance of these anomalies. The central issue
in this discussion is connected with the role of a posteri-
ori choices — whether interesting features in the data bias
the choice of statistical tests, or if arbitrary choices in the
subsequent data analysis enhance the significance of the fea-
tures. Indeed, the WMAP team (Bennett et al. 2011) base
their rejection of the presence of anomalies in the CMB on
such arguments. Of course, one should attempt to correct
for any choices that were made in the process of detect-
ing an anomaly. However, in the absence of an alternative
model for comparison to the standard Gaussian, statisti-
cally isotropic one adopted to quantify significance, this is
often simply not possible. In this work, whilst it is recog-
nized that care must be taken in the assessment of signif-
icance, we proceed on the basis that allowing a posteriori
reasoning permits us to challenge the limits of our existing
knowledge (Pontzen & Peiris 2010). That is, by focusing
on specific properties of the observed data that are shown
to be empirically interesting, we may open up new paths
to a better theoretical understanding of the Universe. We
will clearly describe the methodology applied to the data,
and attempt to study possible links among the anomalies
in order to search for a physical interpretation.

The analysis of polarization data introduces a new op-
portunity to explore the statistical properties of the CMB
sky, including the possibility of improvement of the sig-
nificance of detection of large-scale anomalies. However,
this cannot be fully included in the current data assess-
ment, since the component-separation products in polar-
ization are high-pass filtered to remove large angular scales
(Planck Collaboration IX 2015), owing to the persistence of
significant systematic artefacts originating in the High Fre-
quency Instrument (HFI) data (Planck Collaboration VII
2015; Planck Collaboration VIII 2015). In addition, limi-
tations of the simulations with which the data are to be
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ABSTRACT

We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using ob-
servations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature,
but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from
the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find
excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad
range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness,
kurtosis, multi-normality, N -point functions, and Minkowski functionals indicate consistency with Gaussianity, while
a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a
peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected
with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the
large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a poste-
riori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a
significance that is dependent on the details of the approach. We perform the first examination of polarization data,
finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations.
Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and
provide our most thorough view of the statistics of the CMB fluctuations to date.

Key words. cosmology: observations – cosmic background radiation – polarization – methods: data analysis – methods:
statistical
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ABSTRACT

We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using ob-
servations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature,
but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from
the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find
excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad
range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness,
kurtosis, multi-normality, N -point functions, and Minkowski functionals indicate consistency with Gaussianity, while
a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a
peak statistics analysis are consistent with the expectations of a Gaussian random field. The “Cold Spot” is detected
with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the
large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a poste-
riori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a
significance that is dependent on the details of the approach. We perform the first examination of polarization data,
finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations.
Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and
provide our most thorough view of the statistics of the CMB fluctuations to date.

Key words. cosmology: observations – cosmic background radiation – polarization – methods: data analysis – methods:
statistical
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1. Introduction

This paper, one of a set associated with the 2015 release
of data from the Planck1 mission (Planck Collaboration I
2015), describes a set of studies undertaken to determine
the statistical properties of both the temperature and po-
larization anisotropies of the cosmic microwave background
(CMB).

The standard cosmological model is described well by
the Friedmann-Lemaître-Robertson-Walker solution of the
Einstein field equations. This model is characterized by a
homogeneous and isotropic background metric and a scale
factor of the expanding Universe. It is hypothesized that
at very early times the Universe went through a period
of accelerated expansion, the so-called “cosmological infla-
tion,” driven by a hypothetical scalar field, the “inflaton.”
During inflation the Universe behaves approximately as a
de Sitter space, providing the conditions by which some of
its present properties can be realized and specifically re-
laxing the problem of initial conditions. In particular, the
seeds that gave rise to the present large-scale matter distri-
bution via gravitational instability originated as quantum
fluctuations of the inflaton about its vacuum state. These
fluctuations in the inflaton produce energy density pertur-
bations that are distributed as a statistically homogeneous
and isotropic Gaussian random field. Linear theory relates
those perturbations to the temperature and polarization
anisotropies of the CMB, implying a distribution for the
anisotropies very close to that of a statistically isotropic
Gaussian random field.

The aim of this paper is to use the full mission Planck
data to test the Gaussianity and isotropy of the CMB as
measured in both intensity and, in a more limited capacity,
polarization. Testing these fundamental properties is cru-
cial for the validation of the standard cosmological scenario,
and has profound implications for our understanding of the
physical nature of the Universe and the initial conditions
of structure formation. Moreover, the confirmation of the
statistically isotropic and Gaussian nature of the CMB is
essential for justifying the corresponding assumptions usu-
ally made when estimating the CMB power spectra and
other quantities to be obtained from the Planck data. In-
deed, the isotropy and Gaussianity of the CMB anisotropies
are implicitly assumed in critical science papers from the
2015 release, in particular those describing the likelihood
and the derivation of cosmological parameter constraints
(Planck Collaboration XI 2015; Planck Collaboration XIII
2015). Conversely, if the detection of significant deviations
from these assumptions cannot be traced to known system-
atic effects or foreground residuals, the presence of which
should be diagnosed by the statistical tests set forth in
this paper, this would necessitate a major revision of the
current methodological approaches adopted in deriving the
mission’s many science results.

∗ Corresponding author: A. J. Banday anthony.banday@irap.
omp.eu
1 Planck (http://www.esa.int/Planck) is a project of the Eu-
ropean Space Agency (ESA) with instruments provided by two
scientific consortia funded by ESA member states and led by
Principal Investigators from France and Italy, telescope reflec-
tors provided through a collaboration between ESA and a sci-
entific consortium led and funded by Denmark, and additional
contributions from NASA (USA).

Well-understood physical processes due to the inte-
grated Sachs-Wolfe (ISW) effect (Planck Collaboration
XVII 2014; Planck Collaboration XXI 2015) and gravita-
tional lensing (Planck Collaboration XIX 2014; Planck Col-
laboration XV 2015) lead to secondary anisotropies that
exhibit marked deviation from Gaussianity. In addition,
Doppler boosting, due to our motion with respect to the
CMB rest frame, induces both a dipolar modulation of
the temperature anisotropies and an aberration that cor-
responds to a change in the apparent arrival directions of
the CMB photons (Challinor & van Leeuwen 2002). Both
of these effects are aligned with the CMB dipole, and were
detected at a statistically significant level on small angular
scales in Planck Collaboration XXVII (2014). Beyond these,
Planck Collaboration XXIII (2014, hereafter PCIS13) es-
tablished that the Planck 2013 data set showed little evi-
dence for non-Gaussianity, with the exception of a number
of CMB temperature anisotropy anomalies on large angu-
lar scales that confirmed earlier claims based on WMAP
data. Moreover, given that the broader frequency cover-
age of the Planck instruments allowed improved compo-
nent separation methods to be applied in the derivation of
foreground-cleaned CMB maps, it was generally considered
that the case for anomalous features in the CMB had been
strengthened. Hence, such anomalies have attracted consid-
erable attention in the community, since they could be the
visible traces of fundamental physical processes occurring
in the early Universe.

However, the literature also supports an ongoing debate
about the significance of these anomalies. The central issue
in this discussion is connected with the role of a posteri-
ori choices — whether interesting features in the data bias
the choice of statistical tests, or if arbitrary choices in the
subsequent data analysis enhance the significance of the fea-
tures. Indeed, the WMAP team (Bennett et al. 2011) base
their rejection of the presence of anomalies in the CMB on
such arguments. Of course, one should attempt to correct
for any choices that were made in the process of detect-
ing an anomaly. However, in the absence of an alternative
model for comparison to the standard Gaussian, statisti-
cally isotropic one adopted to quantify significance, this is
often simply not possible. In this work, whilst it is recog-
nized that care must be taken in the assessment of signif-
icance, we proceed on the basis that allowing a posteriori
reasoning permits us to challenge the limits of our existing
knowledge (Pontzen & Peiris 2010). That is, by focusing
on specific properties of the observed data that are shown
to be empirically interesting, we may open up new paths
to a better theoretical understanding of the Universe. We
will clearly describe the methodology applied to the data,
and attempt to study possible links among the anomalies
in order to search for a physical interpretation.

The analysis of polarization data introduces a new op-
portunity to explore the statistical properties of the CMB
sky, including the possibility of improvement of the sig-
nificance of detection of large-scale anomalies. However,
this cannot be fully included in the current data assess-
ment, since the component-separation products in polar-
ization are high-pass filtered to remove large angular scales
(Planck Collaboration IX 2015), owing to the persistence of
significant systematic artefacts originating in the High Fre-
quency Instrument (HFI) data (Planck Collaboration VII
2015; Planck Collaboration VIII 2015). In addition, limi-
tations of the simulations with which the data are to be
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LQG in the sky!
• Since the longest wave length modes associated with anomalies are just the
modes that experienced curvature in the pre-inflationary dynamics of LQC, several
anomalies were analyzed using LQC. Detailed analysis by the Penn State and
Louisiana State Universities has shown that they cease to be anomalous in LQC!

• The Penn State group has shown that while 5 of the 6 parameters used in the
current standard cosmological models remain essentially unchanged by these LQC
effects, but the 6th (called the optical depth) increases by ∼ 9.8%!

Parameter Std. Inflation LQC

Ωbh
2 0.02238± 0.00014 0.02239± 0.00015

Ωch2 0.1200± 0.0012 0.1200± 0.0012
100θMC 1.04091± 0.00031 1.04093± 0.00031

τ 0.0542± 0.0074 0.0595± 0.0079
ln(1010As) 3.044± 0.014 3.054± 0.015

ns 0.9651± 0.0041 0.9643± 0.0042

Currently all parameters but τ have been measured to ≤ 1% accuracy while τ has
∼ 13% error bars. Forthcoming missions will measure it to ∼ 1% accuracy. It is
exciting that a quantum gravity prediction is within observational reach!
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cs 3. Summary
• LQG starts with a new syntax –Quantum Riemannian Geometry– and uses it to
address the longstanding conceptual issues of QG related to the absence of a
sharp spacetime geometry, as well as mathematical problems stemming from
infinite number of degrees of freedom of GR. By now the basic framework has
matured sufficiently to seek physically interesting applications. Jurek Lewandowski
played a major role in all these developments.

• In GR the most dramatic effects are associated with the physical, dynamical
nature of spacetime in cosmology and black holes. At the onset of inflation,
curvature is about 1066 times that at the horizon of a solar mass BH! That’s why
I used the early universe to illustrate the LQG implications.

• Interesting interplay between the UV and the IR. Singularity resolution because
of UV corrections to GR. A new scale: curvature radius Rcurv at the bounce.
Then perturbations with λPhy & Rcurv at the bounce receive LQC corrections ⇒
corrections to CMB at the largest angular scales!

These effects alleviate two anomalies and also lead to predictions for future
missions (measurements of τ , and the BB spectrum) without compromising
successes of the standard paradigm. Quantum gravity in the sky!
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A final thought

Because the problem of quantum gravity has been with us so long and until
recently there was no obvious observational window to test the ideas, leaders have
often made appeals to aesthetics. For example, one finds quotes from eminent
and thoughtful people like:

“It would have been a cruel god to have laid down such a pretty scheme
(H-space/ Haven) and not have it mean something deep”.

“I just think too many nice things have happened in string theory for it to be all
wrong. Humans do not understand it very well, but I just don’t believe there is a
big cosmic conspiracy that created this incredible thing that has nothing to do
with the real world.”
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Reminder from Feynman

“It would have been a cruel god to have laid down such a pretty scheme (H-space/ Haven) and
not have it mean something deep”.

“I just think too many nice things have happened in string theory for it to be all wrong. Humans

do not understand it very well, but I just don’t believe there is a big cosmic conspiracy that

created this incredible thing that has nothing to do with the real world.”

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are, or what
your name is. If it doesn’t agree with
experiment, it is wrong.”
Richard Feynman.

Examples from history:
Steady state Cosmology (Hoyle, Gold, Bondi, Sciama).
Elementary particles as Chemistry of Geometry (Wheeler)
Atoms as knotted vortices in space (Kelvin, Maxwell)
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A few References

Recent reviews: AA & Bianchi
(RoPP, 2021);
Chapters by Bianchi, Dittrich,
Giesel, Laddha & Varadarajan,
Agullo & Singh, Barbero &
Perez; ... in Loop Quantum
Gravity: The first thirty years.

For beginning researchers:

75 minute long YouTube Video:
The Story of Loop Quantum Gravity - From the Big Bounce to Black Holes.
https://www.youtube.com/watch?v=x9jYH5VIF9Eto

Cover Story in the ‘New Scientist’: From Big Bang to the Big Bounce.
https://sites.psu.edu/institutegravitationandcosmos/files/2020/09/bigbounce.pdf
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Some Long Standing Issues of Quantum Gravity

Quantum Mechanics and General Relativity led to profound paradigm shifts in our
understanding of the physical world, each in its own way. We had to learn to
formulate meaningful questions before we could answer them. Quantum Gravity is
expected to lead to an even more profound paradigm shift! We face deep
conceptual quandaries. Examples:

1. How do you do physics if there is no spacetime metric to anchor it?

2. What is ‘time’ and how do you speak of ‘dynamics’ or ‘happenings’?

3. Are (strong) curvature singularities of GR naturally resolved by quantum
gravity? What really happened at the Big Bang and what really happens deep
inside black holes?
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Answers in Loop Quantum Gravity

1. How do you do physics if there is no spacetime metric to anchor it? Matter
fields and geometry are both quantum mechanical at birth. Matter propagates not
on a fixed spacetime geometry à la Einstein, but on a wave function Ψ(geo)
representing a probability distribution of such geometries. (Analogy: electrons in a
laser beam)

2. What is ‘time’ and how do you speak of ‘dynamics’ or ‘happenings’?
Happening is relational concept (à la Leibniz!) A matter field or an attribute of
spacetime geometry can serve as a relational clock with respect to which other
fields ‘evolve’ (e.g., in cosmology). There is no grandfather clock in the
background.

3. Are strong curvature singularities of GR naturally resolved by quantum gravity?
In all cosmological and black hole models considered so far, strong curvature
singularities are tamed in LQG. So physics does not stop abruptly as in GR. LQG
equations continue to be well defined and have definite predictions.
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Inflationary Scenario

• Current understanding of the early universe: The large scale
structure we see in the universe can be traced back to the tiny,
1 part in 10,000 fluctuations that have been observed in the
cosmic microwave background (CMB) that was emitted when
the universe was only 380,000 years young. Today, the leading
scenario to account for the CMB fluctuations posits that there
was a short inflationary phase in the very early universe.

• During this nearly exponential expansion, the early ‘vacuum fluctuations’
–inevitable consequence of the Heisenberg uncertainty principle– in cosmological
perturbations are converted to the seeds of large scale structure.

• Natural question: Conceptually, the LQG bounce is attractive. But how would
ever know that there was a big bounce rather than a big bang? Would the effects
of the bounce not be just washed away?
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Primordial Spectrum of scalar modes

Standard Inflation predicts a nearly scale invariant primordial power spectrum a la
Standard Ansatz (SA): PR(k) = As(

k
k?

)ns−1. LQC predicts that the primordial
spectrum is nearly scale invariant only on small angular scales (large k). On large
angular scales, there is power suppression: PR(k) = f(k) As(

k
k?

)ns−1 where
f(k) = 1 for large k and f(k) < 1 for small k. (AA,Gupt,Jeong & Sreenath, PRL (2020))
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The three TT-Power spectra: ` < 30
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Natural Questions
• What sets the scale at which power suppression occurs?

At the Big-bang, curvature diverges. In LQC, it is always finite. R reaches its universal

maximum at the bounce Rmax ' 62 (Planck units). Dynamical equations obeyed by the modes

imply that if the physical wavelength of a mode is much smaller than the curvature radius, the

mode does not affected by curvature but otherwise curvature excites it. This sets the scale:

Modes with comoving k . 4× 10−3Mpc−1 get excited in their evolution from the bounce to the

slow roll phase and are not in the Bunch Davies vacuum at the onset of the relevant slow roll.

The primordial spectrum of these modes then fails to be approximately scale invariant.

• Why is there power suppression rather than enhancement at large scales?

This is because of the choice quantum state of perturbations. In inflation one cannot choose it

at the Big-Bang because of the singularity. One chooses it, by positing that the state be the

Bunch-Davies vacuum few e-folds before the modes of interest exit the Hubble horizon (or

curvature radius) –in the middle of the evolution, so to say. In LQC one can specify it using a

new principle that enforces maximum ‘quantum homogeneity and isotropy’ in the Planck regime

and ‘maximum classicality’ at the end of inflation allowed by Heisenberg uncertainty (AA &

Gupt). This initial state then automatically leads to power suppression.

Results I reported offer encouragement pursue other consequences of the LQC
dynamics + these initial conditions.
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From Observations to Fundamental Theory
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• Check on the area gap ∆̊: Make the area gap variable and find its best fit
value. In the plot, RB = (6 ∆/4π)

1
2 . The line, RB = R̊B ≡ 1.57`Pl corresponding

to ∆ = ∆̊ ∼ 5.17`2Pl. It is within the 68% confidence level of PLANCK results.

• An increase of area gap by a factor of 10 is observationally ruled out at 95%
confidence level & decrease by a factor of 10 is ruled out at 68% confidence level.
Totally unforeseen synergy! (AA,Gupt & Sreenath, (2021))

Two way bridge between observations and theory.
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BHs: The issue of information loss

• Information is lost in the classical gravitational collapse: What falls across
event horizon is invisible to outside observers. While I− is a good ‘initial data
surface’, I+ is not.

A collapsing star creates
an event horizon, the
boundary of a trapped
region from where even
light cannot escape
however long you wait.
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Black hole evaporation

t = tin

t = tout Consider a quantum fields
in state |0in〉. The curved
geometry creates pairs of
modes, one falls across the
horizon and the other
escapes to infinity. Energy
flux at infinity ⇒ black
hole shrinks and expected
to eventually disappear.
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If the a singularity persists, then again there is sink of information. Pure states in
the past appear to evolve to mixed states in the future. Most relativists think that
if the singularity persists, information would be lost in our asymptotic region.
But if one insists on unitarity in this spacetime, as one often does in string theory,
then one is led to invoke novel ideas: first we had quantum xerox machines, then
firewalls along the horizon, then fast scramblers, ... Firewalls, for example, would
imply a surprising failure of semi-classical physics! (Impetus for such considerations is

diminished because of LIGO-Virgo discoveries.)
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A puzzle already in the semi-classical regime
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• Heuristics: Evaporation of a solar mass BH to lunar
mass takes ∼ 1063 years. ∼ 1075 modes are emitted to
infinity and are correlated with the modes that fell into
the BH. How could these modes ‘fit in’ the ball of radius
only 0.1mm, the Schwarzschild radius of a lunar mass
BH? Even if they had the ‘largest’ λ ∼ 0.1mm, their
energy would be some 1022 times the lunar mass!
Quandry: Too little available energy to pack so much
‘information’. This has been the key reason to seek
‘mechanisms for purification’ already in the semi-classical
regime irrespective of what happens in the full Planck
regime.

• Resolution: Semi-classical considerations show that as the area of the
dynamical horizon (DH) shrinks, the (e.g. TrK = const) 3-surfaces develop
extremely long necks; Wheeler’s ‘bags of gold’. As a solar mass BH shrinks to a
lunar mass the neck grows from ∼ kms, to some ∼ 1055 light years in length! So
the modes that have fallen in the DH get enormously stretched –become infrared.
They can easily hold a lot of correlations with outside modes even though they
have very little total energy. (AA & Ori; Christodoulou & De Lorenzo)
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Beyond semi-classical theory: paradigm 2
Singularity resolution can change the whole picture. (Alesci, AA, Bianchi, Bahrami,

Bojowald, Christodoulou, De Lorenzo, Gambini, Haggard, Martin-Dussaud, Olmedo, Perez,

Rovelli, Singh, Smerlak, Ori, Pullin, Vidotto, . . . )
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Suppose the singularity is resolved in a consistent theory, as in
many current proposals (including Hawking’s Take 2, (Hawking, Pope,

Strominger)). Then there is no EH. Correlations between modes
that escaped early on to I+ and those that were trapped ‘inside
the DH’ in the semi-classical regime could be restored at I+,
because the ‘trapped modes’ could pass through the quantum
region and reach I+.

But how exactly this happens for the modes that are infrared in
the semi-classical regime is still very much under debate. There
are proposals and some detailed calculations are being pursued.
Much work remains but one point is clear: If the singularity is
resolved, obstruction to information recovery is removed.
(A concrete recent result that may help: 〈T̂ab〉 continues to be a well-defined

distribution across space-like singularities (AA, De Lorenzo, Schneider).)
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