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Stationary black holes



Static spherically symmetric solution to vacuum Einstein’s equations
Stationary spacetime — there exists a one-parameter group of isometries whose orbits are timelike 
curves (equivalently, there exist a timelike Killing vector field). Metric components may be chosen to be 
independent of the time-coordinate. 
Static spacetime — stationary and in addition, there exist a spacelike hypersurface which is orthogonal 
to the orbits of the isometry. There exist time-coordinate, for which metric components are time 
independent and all time-space components  vanish. 
Spherically symmetric spacetime — isometry group contains a subgroup isomorphic to  

Schwarzschild solution (to ) is: 

 

Features: 
• Describes the spacetime outside of the spherically symmetric star  
• Asymptotically flat (as ,  approaches  in spherical coordinates) 
• Problem: for  and  metric components become singular (not a problem for ordinary 

bodies!) 
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Birkhoff’s theorem

Any spherically symmetric solution to vacuum Einstein’s equations must be static and 
asymptotically flat. Therefore, the Schwarzschild metric is the unique vacuum solution 
with spherical symmetry and there are no time-dependent solutions of this form. 

However, spherical symmetry is a strong assumption: 

…are black holes physical or just a consequence of unphysical assumptions? 

[Birkhoff 1923]
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Notice that on the conformal diagram of the spherical collapse spacetime, region  of the physical 
spacetime lies outside of , in contrast to Minkowski spacetime, even though  is 
nonsingular. T
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Black holes and event horizons
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the boundary  of the black hole region is the event 
horizon , which is a null 3-dim surface. 
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Killing horizons
Consider a stationary black hole. There exists a Killing field  which is null/normal to the horizon of  
the black hole. If  does not coincide with the stationary Killing vector field , we obtain it by a linear 
combination of  with rotational Killing vector field : 

 

In case of a stationary rotating black hole, Kerr black hole, the constant  is called the angular velocity 
of the horizon. Since , it follows that  is also normal to the horizon, and consequently 
there exist a function , called surface gravity, such that: 

 

It can be showed that  on the horizon. The above may be rewritten as: 
  

which is just the geodesic equation in a non-affine parametrization.  

Note: In a static, asymptotically flat spacetime, the surface gravity is the acceleration of the static 
observer near the horizon, as measured by a static observer at infinity. 
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κ

∇ν(χμχμ) = − 2κχν

κ = const.
χμ ∇ν χμ = − χμ ∇μ χν = − κχν



No-hair, rigidity and uniqueness theorems
No-hair  

Stationary, asymptotically flat black hole solutions to Einstein’s equations coupled to electromagnetism 
that are non-singular outside the event horizon are fully characterized by the following parameters:  
mass, electric charge and magnetic charge, and angular momentum.  

Rigidity  
Rotating stationary black hole must be axisymmetric. 

Uniqueness  
The only possible stationary and axisymmetric black hole solution of the Einstein-Maxwell equations 
satisfying certain boundary conditions (asymptotic flatness) are Kerr-Newman solutions. 

Stationarity??? 
Stationary solutions are of special interest, because we expect them to be the end states of gravitational 
collapse. The alternative might be some sort of oscillating configurations, but oscillations will ultimately 
be damped as energy lost through the emission of gravitational radiation (black hole mergers, 
gravitational collapse). 
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Isolated horizons



Why isolated horizons?
• The laws which are meant to refer just to black holes, are derived assuming that the entire spacetime 

is stationary. In thermodynamics, by contrast, we only need to assume that the system under 
consideration is in equilibrium, but not the entire universe.  

• The first law of black hole thermodynamics, area A and angular velocity  are evaluated at the 
horizon, whereas mass  and angular momentum  are computed at infinity and may include 
contributions from possible matter fields outside the black hole. It would be more satisfactory to have 
laws of black hole mechanics which would only involve characteristics of the black hole alone.  

• The notion of the event horizon is global and requires a teleological knowledge of the whole 
spacetime, as it refers to .  

What can we do about it? 
Drop the requirement that spacetime should admit a stationary Killing field, only ask that the intrinsic 
horizon geometry be time independent.  
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Non-expanding horizons

Weakly isolated horizon

Isolated horizons



Non-expanding horizons
Consider 4-dim spacetime that consists of a manifold  and a metric tensor  of the signature . 
Let  be the torsion free covariant derivative in , corresponding to : 

 
We assume that the metric tensor satisfies Einstein equations with cosmological constant 

 
Next, we study a 3-dim null hypersurface in  

. 
Definition 1.  is a non-expanding horizon if: 
(i)  contains a slice that intersects each null curve in  exactly once, in other words  is of the 

topology 
 

and the fibers of the projection 
 

are null curves in ; 
(ii) expansion of any null vector field  vanishes 

; 
(iii) stress-energy tensor is such that  is causal and future directed on .
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From (ii), (iii) and Raychaudhuri  
equation follows that  is also  
shear free.

ℓ



 is a null vector field  the induced metric  on  is degenerate 
. 

Since  is degenerate, there exist infinitely many derivative operators on  which are 
• torsion-free, 
• metric compatible: . 

However! Its Lie derivative can be uniquely decomposed into expansion and shear 
       

Then, for every  
. 

This means that spacetime covariant derivative   preserves the tangent bundle : 
 

and endows  with a covariant derivative  via the restriction. 
The pair  is called the intrinsic geometry of .  

ℓ ⇒ gab ℋ
ℓagab = 0

gab ℋ

∇cgab = 0

1
2 ℒℓgab = 1

2 θgab + σab ⇒ ℒℓgab = 0
X, Y ∈ Γ(T(ℋ))

(Xa ∇aYb)ℓb = − XaYb ∇aℓb = 0
∇μ T(ℋ)

X, Y ∈ Γ(T(ℋ)) ⇒ ∇XY ∈ Γ(T(ℋ))
ℋ ∇a

(gab, ∇a) ℋ

Non-expanding horizons



We could then define a 1-form  such that 
 

and also surface gravity  
 

Since  is degenerate, it is the pullback to  of a Riemannian metric  on : 
 

What follows from such structure? 
(i) intrinsic geometry  of  determines the pullback  of the spacetime Ricci tensor. 
(ii) the energy condition (Def. 1 (iii)) together with Raychauduhri equation give 

 
meaning that  is proportional to . It follows that  for every . 
(iii) consequences for other components of the curvature — spacetime Weyl tensor 

 
the other component  is gauge invariant and 

 
(iv) from Einstein equations follows 
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Non-expanding horizons — conclusions
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Weakly isolated horizon
Definition 2. A weakly isolated horizon  is a non-expanding horizon, for which the flow of  
preserves the rotation 1-form potential 

 
It follows that   . (0th law extended to horizons representing local equilibrium). 

Covariant derivative  
• not fully determined by  (since  is degenerate) 
• to specify it completely, we need to know how it acts on a covector field  such that , namely 

 
Without loss of generality, we can choose , where  is a compatible coordinate of :   
• it follows that  is symmetric and  

 
therefore, if we are given  it suffices to provide only the projection  of  on the sections of 

 orthogonal to . 
 The geometry of the WIH is fully determined by 
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na naℓa ≠ 0
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(gab, ωa) SAB Sab

ℋ na
⇒ (gab, ωa, SAB)



Weakly isolated horizon

What are the constraints when imposing vacuum Einstein’s equations on this data? 

 

where the LHS is „time” derivative of ,  is the induced derivative operator and  the 
Ricci tensor of .

ℒℓSAB = − κ(ℓ)SAB + ∇(AωB) + ωAωB− 1
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SAB ∇A ℛAB
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Isolated horizons
Definition 3. An isolated horizon  is a weakly isolated horizon, equipped with the null vector 
field  satisfying: 

 
 Not only  and  are „time” independent ( ) but the entire geometry , 

in this sense it is isolated. 

Implications: 
• time independence of , for non-extremal IH: 

   

which means that it is fully specified by the data on cross section . 
• to determine the geometry of a non-extremal ( ) IH we need to fix the cross section  of , 

whereas the fields  are such that: 
(i)  is a pullback of positive definite metric  on  
(ii) metric  is degenerate:     
(iii) surface gravity is constant:    . 
(iv) extend all fields to , by requiring that they are Lie-dragged by :   .
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ℓ
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SAB
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1
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gab gAB S
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ωA

Surface gravity 
 κ(ℓ) = ωaℓa

κ(ℓ) = const .

Non-extremality condition 
κ(ℓ) ≠ 0

[ℒℓ , ∇μ] = 0

ℒℓRμναβ = 0

(ωA, gAB) (ωa, gab) gμν, ∇μ, Rμναβ

[Ashtekar, Beetle, Lewandowski 2002]



Spacetime Weyl tensor in the null frame formalism may be expressed by the following complex 
valued N-P components: 
                                          
Four components are constant along null generators of : 

 
Assumption of the stationarity to the second order: 

 
The components  and  vanish due to the vanishing of expansion and shear of : 

 
The component  may be expressed in terms of the Gaussian curvature  and rotation scalar : 

     where     

Ψ0 = C4141 Ψ1 = C4341 Ψ2 = C4123 Ψ3 = C3432 Ψ4 = C3232

ℋ
DΨI = 0, I = 0, 1, 2, 3

DΨ4 = 0
Ψ0 Ψ1 ℓ

Ψ0 = 0 = Ψ1

Ψ2 K Ω
Ψ2 = − 1

2 (K + iΩ)+ 1
6 Λ ΩηAB = dωAB

D := ℓa∂a

Weyl tensor in Newman-Penrose components



The spacetime Weyl tensor at  is determined by:   

Theorem 1: The possible Petrov types of  are:  I,  II,  D,  III, N,  
       

   generically type II, unless Petrov type D equation is satisfied 

We use a null 2-frame: 
 

Theorem 2: At  the spacetime Weyl tensor is of the Petrov type D iff the following two conditions are 
satisfied: 
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Petrov type D equation
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[Lewandowski, Pawłowski 2003 for ]Λ = 0
[DDR, Lewandowski, Pawłowski 2018]



Solutions to the type D equation



Axisymmetric 2-sphere

No hair theorem. The family of axisymmetric solutions to the Petrov type D equation with (or without) 
cosmological constant defined on a topological sphere can be parametrized by a pair , that is the 
area and angular momentum. They can take the following values: 

(A, J)
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Every solution defines a type D isolated horizon whose intrinsic geometry coincides with the intrinsic 
geometry of a non-extremal Killing horizon contained in one of the following spacetimes: 
(i) Kerr-(anti) de Sitter 
(ii) Schwarzschild-(anti) de Sitter 
(iii) Near horizon limit spacetime near an extremal horizon contained either in the Kerr-(anti) de Sitter or 

Schwarzschild-(anti) de Sitter spacetime. [Lewandowski, Pawłowski 2003 for ]Λ = 0
[DDR, Lewandowski, Pawłowski 2018]



Genus>0 compact 2-surface

Theorem 4. Suppose  is a compact 2-surface of genus>0. The only solution to the Petrov type D 
equation with cosmological constant  are such  that 

         and         

therefore, non-rotating and of constant Gauss curvature. 

S
Λ (gAB, ωA)

dωAB = 0 K = const ≠
Λ
3

[DDR, Kaminski, Lewandowski, Szereszewski 2018]



IH of nontrivial topology

[DDR, Lewandowski, Racz 2020]

[Lewandowski, Ossowski 2020]

Consider the  of the structure of the -bundle over 2-manifold diffeomorphic to ,  

then:  

where    characterizes the -bundle:    

Theorem 5. All axisymmetric solutions which for every value of the topological charge  set a 3-dim 

family that can be parametrized by the area, Kerr and NUT parameters. 

Embeddable in Kerr-NUT-(anti) de Sitter spacetimes. 

If we allow for conical singularities, then 

Theorem 6. All axisymmetric solutions set a 4-dim family that can be parametrized by the area, 

acceleration, Kerr and NUT parameters. 

Embeddable in Accelerated Kerr-NUT-(anti) de Sitter spacetimes. 

ℋ U(1) S2

∫S2

Ωη = 2πκm =: 2πn ≠ 0

m ∈ ℤ U(1)

m

[DDR, Lewandowski, Ossowski 2023]



Thank you!


