Encounter rate in marine snow dynamics

Jan Turczynowicz

Phytoplankton bloom

Wilson, S.T. et al., Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science **365**, (2019)

Spungin, D. et alMechanisms of Trichodesmium demise within the New Caledonian lagoon during the VAHINE mesocosm experiment. Biogeosciences **13**, (2016)

Coagulation

Burd, A.B. et al., Particle Aggregation. Annual Review of Marine Science 1, (2009)

Marine snow

Taken from the depth of 80 m

Chajwa, R. et al., Hidden comet tails of marine snow impede ocean-based carbon sequestration. Science 386, (2024)

Marine snow

Vertical transport of 2 to 9 Gt C/yr*, Anthropogenic carbon in 2022 \sim 11.8 Gt C/yr**

*Boyd, P.W. et al. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature **568**, (2019) **Friedlingstein, P. et al. Global Carbon Budget 2023. Earth System Science Data **15**, (2023)

Smoluchowski equation

$$\partial_t \varphi = \partial_m(\kappa(z,m) \varphi) - \partial_z(u(z,m) \varphi) + \Gamma(z,m,\varphi(z,m))$$

Where: z – depht, m – mass of particles, $\varphi(z, m)$ – concentration of particles for given mass and depth, $\kappa(z, m)$ – rate of demineralisation, u(z, m) – settling velocity, $\Gamma(z, m, \varphi(z, m))$ – aggregation term

Nguyen, T.T.H. *et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat Commun* **13**, (2022)

Chajwa, R. et al., Hidden comet tails of marine snow impede ocean-based carbon sequestration. Science **386**, (2024)

Where: z – depht, m – mass of particles, $\varphi(z, m)$ – concentration of particles for given mass and depth, $\kappa(z, m)$ – rate of demineralisation, u(z, m) – settling velocity, $\Gamma(z, m, \varphi(z, m))$ – aggregation term

Collisions

Nguyen, T.T.H. *et al. Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates. Nat Commun* **13**, (2022)

Chajwa, R. et al., Hidden comet tails of marine snow impede ocean-based carbon sequestration. Science **386**, (2024)

Where: z – depht, m – mass of particles, $\varphi(z, m)$ – concentration of particles for given mass and depth, $\kappa(z, m)$ – rate of demineralisation, u(z, m) – settling velocity, $\Gamma(z, m, \varphi(z, m))$ – aggregation term

Encounter rate

Encounter rate

Advection – diffusion

Advection – diffusion

$$\partial_t c = D \nabla^2 c - \boldsymbol{u} \cdot \nabla c$$

dimensionless

Advection – diffusion (dimensionless)

$$\nabla^2 c = Pe \, \boldsymbol{u} \cdot \nabla c$$

Where: U – sinking velocity, c – concentration of particles, D – diffusion constant, u – Stokes flow around a sinking sphere, a – sphere radius, Ua/D = Pe – Peclet number

Encounter rate

Flux onto the sphere:

$$\Phi = D \int_{S} \partial_{r} c \, \mathrm{d}\Omega$$

Where: c – concentration of particles, D – diffusion constant, u – Stokes flow around a sinking sphere, S – absorptive surface

Peclet number

Peclet number (Pe = U a / D)

Where: c – concentration of particles, D – diffusion constant, a – sphere radius, U – sinking velocity, r – particle radius

Diffusion dominates

$$\Phi_{\rm D} = 4\pi a c D$$

 $Pe \rightarrow 0$

Peclet number (Pe = U a / D)

Where: c – concentration of particles, D – diffusion constant, a – sphere radius, U – sinking velocity, r – particle radius

Advection dominates

Where: c – concentration of particles, D – diffusion constant, a – sphere radius, U – sinking velocity, r – particle radius

Limiting cases

Where: c – concentration of particles, D – diffusion constant, a – sphere radius, U – sinking velocity, r – particle radius

Non zero particle radius

Non zero particle radius

Institute of Theoretical Physics

NERSI,

Non zero particle radius

Institute of Theoretical Physics

VERS,

Concentration distribution

Peclet number (Pe)

Our results

Institute of Theoretical Physics

Advective kernel

Institute of Theoretical Physics

Summary

Our team

Jan Turczynowicz

Radost Waszkiewicz Maciej Lisicki Jonasz Słomka

Thank you!