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Random matrix model



Completely solvable system

Correlation functions in Gaussian matrix model
The partition function for the β = 1

α -deformed Gaussian eigenvalue

model can be written in eigenvalue form

Z
def
=

∫ ( N∏
i=1

dxi

)
wβ(x) exp

[
−

N∑
i=1

x2i
2

]
. (1.1)

where wβ(x) =
∏

1≤i<j≤N(xi − xj)
2β is the Vandermonde and xi are

diagonalized elements of Hermitian matrix H = hij . Our goal is to find a

multipoint correlation of the gaussian model

E
[
Tr(Hk1) . . .Tr(Hkl )

]
= E

[(
N∑
i=1

xk1i

)
. . .

(
N∑
i=1

xkli

)]
(1.2)

We add generating function with parameter qk to the partition function:

Z (qk) =

∫ ( N∏
i=1

dxi

)
wβ(x) exp

[
−

N∑
i=1

x2i
2

+ xi

]
exp

[
β

∞∑
k=1

qk
k

N∑
i=1

xki

]
.

(1.3)
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How to attack the problem



Symmetric function:

There are many symmetric polynomials.

Monomial symmetric functions:

mλ =
∑
µ∼λ

xµ, (2.4)

where µ ∼ λ means rearrangement of parts of λ.

Powersum symmetric functions:

pλ =
∏

i∈ℓ(λ)

pλi and, pk =
n∑

i=1

xki , (2.5)

where ℓ(λ) is the length of partition λ and λi its i-part. We equipped our

ring with an inner product ⟨•, •⟩

⟨pλ, pµ⟩ = zλδλ,µ, zλ =
∏
i≥1

imimi !, (2.6)

mi is the number the parts in lambda equals to i .
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Deformation of Hall inner product and Jack polynomials:

We can deform the Hall inner product

⟨pλ, pµ⟩α = δλ,µα
ℓ(λ)zλ, (2.7)

with α = 1
β ∈ R. This deformation allow us to have a deformation of

Schur functions with respect to this new inner product.

Jack polynomials defines uniquely by the fillowing conditions:

⟨Pλ,Pµ⟩α = 0, if λ ̸= µ,

Pλ =
∑
µ≤dλ

Cλµmµ

[mλ]Pλ = 1, P-normalization.

[mλ]Jλ = |λ|!, J-normalization.
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Dunkl Operator



Dunkl Operator

Dunkl operator defines on using a certain data:

Definition:

• Let R be a root system.

• Let G be a reflection group on R∨

• k : R → C a G -invariant function.

• σαX := X − 2⟨X ,α⟩
⟨α,α⟩ is a reflection aloung the root α ∈ R.

Then the Dunkl operator for ξ ∈ RN is

Tξf (x) := ∂ξ +
∑
α∈R+

kα⟨α, ξ⟩
f (x)− f (σαx)

⟨α, x⟩
. (3.8)

We set Tξi = Ti for ξi ∈ RN .
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Dunkl Kernel and Bessel function

Definition/Theorem Dunkl Kernel is f = Ek(•, y) such that

Tξf = ⟨ξ, y⟩f , f (0) = 1. (3.9)

It is a unique and real analytic solution for Re(k > 0) [Dunkl].

Some properties:

• Ek(y , x) = Ek(x , y).

• Ek(gx , gy) = E (x , y), for g ∈ G .

And the convolution theorem [Dunkl]∫
RN

Ek(x , y)Ek(x , z)e
−|x|2/2wk(x)dx = cke

(y ,y)/2+(z,z)/2Ek(z , y).
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Generalized Bessel function and spherical part of algebra

The following two theorems by [Opdam] and [Okounkov] connect the

theory of Dunkl operators to matrix models.

Definition: Generalized bessel function is defined as

Fk(x , y) :=
1

|G |
∑
f∈G

Ek(gx , y). (3.10)

Theorem: [Okounkov]

F 1
α
(x , y) =

∑
λ

Pλ(x ;α)Pλ(y ;α)

(n/α)λpλ
. (3.11)

where (u)λ =
∏

(i,j)∈λ(u + (j − 1)− (i − 1)/α), and pλ = (Pλ,Pλ) and

Re(α) > 0.
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Result:

Using Okounkov Bessel function formula and Dunkl convolution theorem

we can evaluate the average of two Jack polynomials

Theorem [P.K. P. Su lkowski: arXiv:24XX.XXXX]:

E[Pµ(x ;α)Pβ(x ;α)] = α−|µ|−|β|Jµ(1;α)Jβ(1;α)×〈
Pµ(y ;α),

〈
Pβ(z ;α), e

|y |2/2+|z|2/2
∑
λ

Pλ(y ;α)Pλ(z ;α)

(n/α)λpλ

〉〉
.

(3.12)

Corollary:

E[Pµ(x ;α)e
−p1(x)] = α−|µ|Jµ(1;α)e

−N
2

[
p
|µ|/2
2 − p

|µ|
1

]
Pµ (3.13)
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Thanks.
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Cauchy identity

Cauchy identity for Jack polynomials is

exp

[
β

∞∑
k=1

pk p̄k
k

]
=
∑
λ

Pλ{pk}Pλ{p̄k}
⟨Pλ,Pλ⟩

. (3.14)

here pk and p̄k are power sum polynomials of possibly different sets if

variables. Putting p̄k = a2β
−1δk,2 we see that

exp
[a2p2

2

]
=
∑
λ

Pλ · Pλ{a2β−1δk,2}
⟨Pλ,Pλ⟩

. (3.15)

But the left hand side can also obtain by mutiplying p2 n-times on Pø.

This gives us the expression for C’s

∑
λ(2)...λ(2n−2);λ(2n)=λ

Cϕλ(2)Cλ(2)λ(4) . . .Cλ(2n−2)λ(2n) =
2|λ|/2(|λ|/2)!

a
|λ|/2
2

Pλ{a2β−1δk,2}
⟨Pλ,Pλ⟩

.

(3.16)



A and Peri rule

First, we notice that

Aµλ =
⟨Pλ, p

2
1Pµ⟩

⟨Pλ, p2Pµ⟩
=

1

1− 2
⟨Pλ,P(1,1)Pµ⟩
⟨Pλ,P2

1Pµ⟩

. (3.17)

The last equality follows from P{1} = p1 and P{1,1} = 1
2

(
p21 − p2

)
. Jack

polynomials are satisfying a rule known as Pieri rule

P(1r )Pµ =
∑
λ

cλµ,(1r )Pλ, (3.18)

where λ− µ is vertical r-strip and cλµ,(1r ) is known object. Using this rule

we can calculate Aµν

β(1− β)Aµλ = (j2 − j1 + β(i1 − i2))
2 − (1− β + β2) (3.19)



Peri rule coefficients

The coefficients in Peri rule 3.18 is given by

cλµ,(1r ) =
∏

s∈X (λ/µ)

hλ∗ (s)h
∗
µ(s)

hµ∗ (s)h∗λ(s)
(3.20)

h∗λ(s) and hλ∗ (s) are respectively the upper and lower hook lengths of the

box s:
h∗λ(s) = β−1(aλ(s) + 1) + lλ(s)

hλ∗ (s) = β−1aλ(s) + lλ(s) + 1
(3.21)

⟨Pλ,P
2
1Pµ⟩

⟨Pλ,P(1,1)Pµ⟩
=

∑
σ=µ+□ cλσ,1c

σ
µ,1

cλµ,(1,1)
=

cµ+□1+□2

µ+□2,1
cµ+□2

µ,1 + cµ+□1+□2

µ+□1,1
cµ+□1

µ,1

cµ+□1+□2

µ,(1,1)

(3.22)



Depicted version of Peri rule



References i

References

[1] L. Lando, A. Zvonkin , Graphs on Surfaces and Their Applications

[2] L. Cassia, R. Lodin and M. Zabzine, JHEP 10 (2020), 126

doi:10.1007/JHEP10(2020)126 [arXiv:2007.10354 [hep-th]].

[3] C. Itzykson and J.-B. Zuber. Matrix integration and combinatorics

of modular groups. Communications in Mathematical Physics,

134(1):197 – 207, 1990. doi: cmp/1104201618. URL

https://doi.org/.



Jack polynomials

Jack Polynomials is beta deform extension of Schur polynomials. We can

define Jack polynomial P similar to Schur polynomial by adding an extra

weight.

Pλ =
∑
T

ψT (β)
∏
s∈λ

zT (s), (4.23)

where extra weight ψT is given with respect to sequence of partition in

Young diagram, ø = ν1 → ν2 → · · · → νn = λ.

ψT (β) =
∏
i

ψνi+1/νi
where, (4.24)

ψλ/µ =
∏

s∈Rλ/µ−Cλ/µ

armµ(s) + β(legµ(s) + 1)

armµ(s) + βlegµ + 1

armλ(s) + β(legλ(s) + 1)

armλ(s) + βlegλ + 1

(4.25)

where arm(s) is number of boxes in the right of s and leg(s) is number of

boxes below s. Jack polynomials form an orthogonal basis ⟨Pλ,Pµ⟩ = 0

whenever λ ̸= µ.

If we put β = 1,we get ψ = 1, and we recover definition of Schur.
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