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The	 use	 of	 the	 term	 “Physical	Mathematics”	 is	 not	meant	 to	 detract	 from	 the	
venerable	 subject	 of	 Mathematical	 Physics	 but	 rather	 to	 delineate	 a	 smaller	
subfield	 characterized	 by	 questions	 and	 goals	 that	 are	 often	motivated,	 on	 the	
physics	 side,	 by	 quantum	gravity,	 string	 theory,	 and	 supersymmetry,	 (and	more	
recently	by	the	notion	of	 topological	phases	 in	condensed	matter	physics),	and,	
on	the	mathematics	side,	often	involve	deep	relations	to	infinite-dimensional	Lie	
algebras	 (and	groups),	 topology,	geometry,	and	even	analytic	number	theory,	 in	
addition	to	the	more	traditional	relations	of	physics	to	algebra,	group	theory,	and	
analysis.	


To	repeat,	one	of	the	guiding	principles	is	the	goal	of	understanding	the	ultimate	
foundations	 of	 physics.	 Following	 the	 lessons	 of	 history,	 we	 may	 reasonably	
expect	this	to	 lead	to	 important	new	insights	 in	mathematics.	But	–	and	here	 is	
the	central	point	of	this	essay	–	it	is	also	true	that	getting	there	is	more	than	half	
the	fun:	If	a	physical	insight	leads	to	a	significant	new	result	in	mathematics,	that	
is	 considered	 a	 success.	 It	 is	 a	 success	 just	 as	 profound	 and	 notable	 as	 an	
experimental	 confirmation	 from	 a	 laboratory	 of	 a	 theoretical	 prediction.	 For	
example,	 the	 discovery	 of	 a	 new	 and	 powerful	 invariant	 of	 four-dimensional	
manifolds	is	a	vindication	just	as	satisfying	as	the	discovery	of	a	new	particle.


					Gregory	Moore,	“Physical	Mathematics	and	the	Future”	(2014)
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Gauge	theories	from	string	theory


10-dim		=		R4 x

Superstring	theory	–	effective	theory	in	4	dimensions	follows	from	
compactification	of	10-dim	string	theory	on	a	Calabi-Yau	manifold.	

(Beyond)	Standard	Model	theory

+	?



(Simple)	Calabi-Yau	threefold


(Singular)	conifold



(Simple)	Calabi-Yau	threefold


(Singular)	conifold

Deformed	conifold



Geometric	transition


(Singular)	conifold

Deformed	conifold Resolved	conifold



Quantum	fields	from	strings

Topological	string	theory	on	deformed	conifold	reduces	to	

Chern-Simons	topological	field	theory	on	S3,	with	SU(N)	gauge	group:	

Deformed	conifold



Quantum	fields	from	strings

Topological	string	theory	on	deformed	conifold	reduces	to	

Chern-Simons	topological	field	theory	on	S3,	with	SU(N)	gauge	group:	

Observables	–	expectation	values	of	
Wilson	loops	along	a	closed	curve	K:



Quantum	fields	from	strings

Topological	string	theory	on	deformed	conifold	reduces	to	

Chern-Simons	topological	field	theory	on	S3,	with	SU(N)	gauge	group:	

Observables	–	expectation	values	of	
Wilson	loops	along	a	closed	curve	K:

=	knot	(HOMFLY)	polynomials



After	geometric	transition…


(Singular)	conifold

Deformed	conifold Resolved	conifold



After	geometric	transition…


Resolved	conifold

After	embedding	topological	string	theory	in	superstrings,	in	remaining

(spacetime)	dimensions	it	reduces	to	quantum	field	theory	with	

extended	supersymmetry.	String	amplitudes	encode	properties	of	BPS	
states	in	this	supersymmetric	theory:

BPS	states



After	geometric	transition…


Resolved	conifold

After	embedding	topological	string	theory	in	superstrings,	in	remaining

(spacetime)	dimensions	it	reduces	to	quantum	field	theory	with	

extended	supersymmetry.	String	amplitudes	encode	properties	of	BPS	
states	in	this	supersymmetric	theory:

BPS	states

Colored	HOMFLY

polynomials
Knot	theory



Ooguri-Vafa	(LMOV)	invariants


Resolved	conifold

Colored	HOMFLY	polynomials	encode	enumeration	of	these	BPS	states:

BPS	states

Colored	HOMFLY

polynomials
Knot	theory



BPS	states	and	quivers


Fundamental 
BPS	states

Nodes	of 
a	quiver

Quiver	representation	theory

BPS	states	in	question	are	in	fact	bound	states	of	certain	
fundamental	states,	described	by	quiver	representation	theory:



Fundamental 
BPS	states

Generators	of 
HOMFLY	homology

Nodes	of 
a	quiver

Knot	theory Quiver	representation	theory

BPS	states	in	question	are	in	fact	bound	states	of	certain	
fundamental	states,	described	by	quiver	representation	theory:

BPS	states	and	quivers




Knots-quivers	correspondence


Generators	of 
HOMFLY	homology

Nodes	of 
a	quiver

Knot	theory Quiver	representation	theory
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Quiver	representation	theory

Consider	moduli	space	of	maps																						.	It	is	characterized


by	motivic	Donaldson-Thomas	invariants:

Cd1

Cd2

Cd3

Cdi ! Cdj

⌦d1,...,dm;j 2 N
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Quiver	representation	theory

Consider	moduli	space	of	maps																						.	It	is	characterized


by	motivic	Donaldson-Thomas	invariants:

Cd1

Cd2

Cd3

Cdi ! Cdj

⌦d1,...,dm;j 2 N

Recall,	for	a	knot:

DT

LMOV
colored	HOMFLY



Knots-quivers	correspondence
With	appropriate	identification	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	motivic	generating	function,	for	
some	particular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants 
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

With	appropriate	identification	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	motivic	generating	function,	for	
some	particular	symmetric	matrix	C:
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Example	–	trefoil	knot

Colored	polynomial	for	trefoil:

We	find:



Examples	–	torus	knots



Examples	–	62	knot



Examples	–	63	knot



Further	developments…



“Donaldson-Thomas	invariants,	torus	knots,	and	lattice	paths”

Miłosz	Panfil,	Marko	Stosic,	P.S.

Phys.	Rev.	D98	(2018)	026022


“Torus	knots	and	generalized	Schröder	paths”

Marko	Stosic,	P.S.,	arXiv:	2405.10161

Statistics	of	lattice	paths

For	torus	knots,	BPS	numbers	count	lattice	paths,	which	makes	
contact	with	combinatorics	and	models	of	statistical	physics!



Other	Calabi-Yau	manifolds


Analogous	results	arise	for	supersymmetric	theories	engineered	
by	toric	Calabi-Yau	manifolds.

“Topological	strings,	strips	and	quivers”

M.	Panfil,	P.S.,	JHEP	1901	(2019)	124


“Branes,	quivers	and	wave-functions”

T.	Kimura,	M.	Panfil,	Y.	Sugimoto,	P.S.


SciPost	Phys.	10	(2021)	051

Resolved	conifold



Links	with	conformal	field	theory

"Fermionic	form	of	VOA	characters”

"Fermionic	sum	representations	for	conformal	field	theory	characters” 
R.	Kadem,	T.	Klassen,	B.	McCoy,	E.	Melzer	–	Phys.	Lett.	B307	(1993)	68
"Nahm	sums”

"Conformal	field	theory	and	torsion	elements	of	the	Bloch	group”

W.	Nahm	–	Les	Houches	School	of	Physics	(2007)
Relations	to	logarithmic	conformal	field	theories

"Characters	of	coinvariants	in	(1,p)	logarithmic	models”

B.	Feigin,	I.	Tipunin	–	arXiv:	0805.4096	[math.QA]
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Summary
(Hopefully)	we	learnt	what	are:	

• Basic	properties	of	quantum	field	theories	with	

supersymmetry	and	topological	invariance

• Geometric	transition	and	other	dualities	motivated	by	string	

theory,	which	relate	different	quantum	field	theories

• Mathematical	manifestation	of	such	dualities	in	the	form	of	

knots-quivers	correspondence

• Other	relations	to	statistical	models	of	lattice	paths,	

conformal	field	theory,	wave-function	behavior	for	other	
Calabi-Yau	systems,		etc.



Summary

• What	else	(in	the	spirit	of	physical	mathematics)	can	physics	and	
mathematics	learn	from	each	other?


• The	links	to	sophisticated	mathematics	arise	from	simplest	
examples	of	quantum	field	theories	–	what	would	then	arise	for	
more	complicated	and	realistic	quantum	field	theories…?


• What	is	quantum	field	theory?	What	is	the	space	of	such	
theories?	Is	this	an	ultimate	formalism	to	describe	Nature?


