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From Wikipedia, the free encyclopedia

The subject of physical mathematics is concerned with mathematics that is motivated by physics and is considered by some as a
subfield of mathematical physics.




The use of the term “Physical Mathematics” is not meant to detract from the
venerable subject of Mathematical Physics but rather to delineate a smaller
subfield characterized by questions and goals that are often motivated, on the
physics side, by quantum gravity, string theory, and supersymmetry, (and more
recently by the notion of topological phases in condensed matter physics), and,
on the mathematics side, often involve deep relations to infinite-dimensional Lie
algebras (and groups), topology, geometry, and even analytic number theory, in
addition to the more traditional relations of physics to algebra, group theory, and
analysis.

To repeat, one of the guiding principles is the goal of understanding the ultimate
foundations of physics. Following the lessons of history, we may reasonably
expect this to lead to important new insights in mathematics. But — and here is
the central point of this essay — it is also true that getting there is more than half
the fun: If a physical insight leads to a significant new result in mathematics, that
is considered a success. It is a success just as profound and notable as an
experimental confirmation from a laboratory of a theoretical prediction. For
example, the discovery of a new and powerful invariant of four-dimensional
manifolds is a vindication just as satisfying as the discovery of a new particle.

Gregory Moore, “Physical Mathematics and the Future” (2014)
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Superstring theory — effective theory in 4 dimensions follows from
compactification of 10-dim string theory on a Calabi-Yau manifold.

dim = Rt x 0
10-dim ; )?;

(Beyond) Standard Model theory
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(Simple) Calabi-Yau threefold

(Singular) conifold
w2+y2—|—u2+v2 =0



(Singular) conifold
3132—|-y2—|—u2—|—v2 =0

SZ

Deformed conifold T*S*
w2+y2+u2+v2 =1



Geometric transition

(Singular) conifold
2+t +u’ 0 =0

SZ

Deformed conifold T*S° Resolved conifold
a:2+y2—|—u2+'02 =1



Topological string theory on deformed conifold reduces to
Chern-Simons topological field theory on S3, with SU(N) gauge group:

k 2
S = E/TI‘(A/\(ZA-I- §A/\A/\A)

Deformed conifold T*S°

The Floer Memorial Volume pp 637-678 't

Chern-Simons gauge theory as a string theory b

Edw d W tten




Quantum fields from strings

Topological string theory on deformed conifold reduces to
Chern-Simons topological field theory on S3, with SU(N) gauge group:

k 2
= — | Tr(ANdA+ -ANANA
S 47r/r( Ad +3/\/\)

Observables — expectation values of
Wilson loops along a closed curve K:

P(a,q) = /DA(TrefKA)eiS

q:ek+_N, a,:qN



Topological string theory on deformed conifold reduces to
Chern-Simons topological field theory on S3, with SU(N) gauge group:

k 2
= — | Tr(ANdA+ -ANANA
S 47r/r( Ad +3/\/\)

Observables — expectation values of
Wilson loops along a closed curve K:

P(a,q) = /DATrefK )e'”

q—ek+N a:qN

P(a,q) = knot (HOMFLY) polynomials

1} Commun. Math. Phys. 121, 351-399 (1989) Mathematical |
i
© Springer-Verlag 1989
Quantum Field Theory and the Jones Polynomial *
P L —1 2
Edward Witten ** 7 (CL,Q)—CL(] +aq—a,




After geometric transition...

(Singular) conifold
3132—|-y2—|—u2—|—v2 =0

SZ

Deformed conifold T*S° Resolved conifold



After geometric transition...

After embedding topological string theory in superstrings, in remaining
(spacetime) dimensions it reduces to quantum field theory with

extended supersymmetry. String amplitudes encode properties of BPS
states in this supersymmetric theory:

Resolved conifold




After geometric transition...

After embedding topological string theory in superstrings, in remaining
(spacetime) dimensions it reduces to quantum field theory with

extended supersymmetry. String amplitudes encode properties of BPS
states in this supersymmetric theory:

Resolved conifold
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Colored HOMFLY polynomials encode enumeration of these BPS states:

N <

Z " P.(a,q) = H (1 _ mraiqj+2k+1)OW,i,j

’r:O T7i7j7k

Resolved conifold

' Colored HOMFLY
| polynomials |

Knot theory
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BPS states and

BPS states in question are in fact bound states of certain
fundamental states, described by quiver representation theory:

Fundamental |
- BPSstates |

l\ a quiver

—

Quiver representation theory
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BPS states anc

BPS states in question are in fact bound states of certain
fundamental states, described by quiver representation theory:

| Fundamental |

Generators of
' HOMFLY homology!

|

}

1}
— e

“ 1\ a quiver
5 |

Knot theory Quiver representation theory



Knots-quivers correspondence

 ADV. THEOR. MATH. PHYS.
' Volume 23, Number 7, 1849-1902, 2019
1

Knots-quivers correspondence

| P10TR KUCHARSKI, MARKUS REINEKE, |
MARKO STOSIC, AND PIOTR SULKOWSKI |

Generators of
' HOMFLY homology!
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Knot theory Quiver representation theory
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Quiver representation theory

Consider moduli space of maps C% — C%, It is characterized

by motivic Donaldson-Thomas invariants: 4, 4 .; € N

.....

(_q)Zszl Ci,jdid;

di,....dm (q2 q2)d1 T (q2 q2)dm

dy Adm
it Ty




Consider moduli space of maps C% — C%, It is characterized

by motivic Donaldson-Thomas invariants: 4, 4 .; € N
(—Q)Z =1 Ciidid; d d
Po(zi1,...,2m) = rytee e
( ) ] Zd (% 6%)a, - (0% ¢)an
Lyeens —
= II TIII (1_ )q3+2k+1)( O T

(dy,....dum )70 GEL k>0



Consider moduli space of maps C% — C%, It is characterized

by motivic Donaldson-Thomas invariants: 4, 4 .; € N

Po(z1,...,Tm) = Z (qQ;QQ) (q Q)
- 1 HH(l—

1 — pTglgit2k+l OV |
r\a,9), H (1 —a"a'q Tvov
colored HOMF7[Y



With appropriate identification of variables, all colored HOMFLY

polynomials are captured by the motivic generating function, for
some particular symmetric matrix C:

00
S e 1 T
r=0

l;d; ad( l)tidi

r; = xa® gl (—1)b



With appropriate identification of variables, all colored HOMFLY

polynomials are captured by the motivic generating function, for
some particular symmetric matrix C:

> . m _lid; jaid; 1 t:d;
P(z) = Z P.(a,q)x" = Z g2 Ciidids pdit...tdm [[i=1 ¢*"a™% (1)
r=0

dy,....dym=>0 HZZI(QQ; q2)di

Note: infinite number of colored polynomials / LMOV invariants
encoded in a finite number of parameters of a matrix C.




With appropriate identification of variables, all colored HOMFLY

polynomials are captured by the motivic generating function, for
some particular symmetric matrix C:

o0 m Lid; aid; tid;

oo d.d. . 1tz g @t _1 iy
P(I) — E Pr(aa Q)CET - E qu-J‘ Ci,jdid; l?d1+"'+dm Hz_l ({n 2. (2 )
r=0 dy,...,dm >0 [1i=1(4% 4%)a,

Note: infinite number of colored polynomials / LMOV invariants
encoded in a finite number of parameters of a matrix C.

Knots Quivers
Homological degrees, framing Number of loops




With appropriate identification of variables, all colored HOMFLY

polynomials are captured by the motivic generating function, for
some particular symmetric matrix C:

l;d; ad( l)t,'d,'

S [Ti, 4"
- Z Pr(aa Q)CET — Z qu'j i did; d1+ Ham 2 2= m
r=0

dy,...,dm >0 szl(q2; q2)d,-

Note: infinite number of colored polynomials / LMOV invariants
encoded in a finite number of parameters of a matrix C.

Knots Quivers

Homological degrees, framing Number of loops
Colored HOMFLY-PT Motivic generating series
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With appropriate identification of variables, all colored HOMFLY

polynomials are captured by the motivic generating function, for
some particular symmetric matrix C:

00
S e 1 T
r=0

l;d; ad( l)tidi

dy,....dm >0 Hz: (q =q )di

Note: infinite number of colored polynomials / LMOV invariants
encoded in a finite number of parameters of a matrix C.

Knots Quivers
Homological degrees, framing Number of loops
Colored HOMFLY-PT Motivic generating series
LMOV invariants € N | Motivic DT-invariants € N
Classical LMOYV invariants | Numerical DT-invariants
Algebra of BPS states Cohom. Hall Algebra
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Statistics of lattice paths

For torus knots, BPS numbers count lattice paths, which makes
contact with combinatorics and models of statistical physics!

A

“Donaldson-Thomas invariants, torus knots, and lattice paths”
Mitosz Panfil, Marko Stosic, P.S.
Phys. Rev. D98 (2018) 026022

“Torus knots and generalized Schroder paths”
Marko Stosic, P.S., arXiv: 2405.10161



manifolds

Analogous results arise for supersymmetric theories engineered
by toric Calabi-Yau manifolds.

Resolved conifold
52

“Topological strings, strips and quivers”
M. Panfil, P.S., JHEP 1901 (2019) 124

“Branes, quivers and wave-functions”
TI. Kimura, M. Panfil, Y. Sugimoto, P.S.
SciPost Phys. 10 (2021) 051



"Fermionic form of VOA characters”

"Fermionic sum representations for conformal field theory characters’
R. Kadem, T. Klassen, B. McCoy, E. Melzer — Phys. Lett. B307 (1993) 68

4

"Nahm sums”

"Conformal field theory and torsion elements of the Bloch group”
W. Nahm — Les Houches School of Physics (2007)

Relations to logarithmic conformal field theories

"Characters of coinvariants in (1,p) logarithmic models”
B. Feigin, I. Tipunin — arXiv: 0805.4096 [math.QA]
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(Hopefully) we learnt what are:

® Basic properties of quantum field theories with
supersymmetry and topological invariance

® Geometric transition and other dualities motivated by string
theory, which relate different quantum field theories

® Mathematical manifestation of such dualities in the form of
knots-quivers correspondence

® Other relations to statistical models of lattice paths,
conformal field theory, wave-function behavior for other
Calabi-Yau systems, etc.
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Summar

® \What else (in the spirit of physical mathematics) can physics and
mathematics learn from each other?

® The links to sophisticated mathematics arise from simplest
examples of quantum field theories — what would then arise for
more complicated and realistic quantum field theories...”?

® What is quantum field theory? What is the space of such
theories? Is this an ultimate formalism to describe Nature?
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