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The	 use	 of	 the	 term	 “Physical	Mathema6cs”	 is	 not	meant	 to	 detract	 from	 the	
venerable	 subject	 of	 Mathema6cal	 Physics	 but	 rather	 to	 delineate	 a	 smaller	
subfield	 characterized	 by	 ques6ons	 and	 goals	 that	 are	 oTen	mo6vated,	 on	 the	
physics	 side,	 by	 quantum	gravity,	 string	 theory,	 and	 supersymmetry,	 (and	more	
recently	by	the	no6on	of	 topological	phases	 in	condensed	maVer	physics),	and,	
on	the	mathema6cs	side,	oTen	involve	deep	rela6ons	to	infinite-dimensional	Lie	
algebras	 (and	groups),	 topology,	geometry,	and	even	analy6c	number	theory,	 in	
addi6on	to	the	more	tradi6onal	rela6ons	of	physics	to	algebra,	group	theory,	and	
analysis.		

To	repeat,	one	of	the	guiding	principles	is	the	goal	of	understanding	the	ul6mate	
founda6ons	 of	 physics.	 Following	 the	 lessons	 of	 history,	 we	 may	 reasonably	
expect	this	to	 lead	to	 important	new	insights	 in	mathema6cs.	But	–	and	here	 is	
the	central	point	of	this	essay	–	it	is	also	true	that	ge]ng	there	is	more	than	half	
the	fun:	If	a	physical	insight	leads	to	a	significant	new	result	in	mathema6cs,	that	
is	 considered	 a	 success.	 It	 is	 a	 success	 just	 as	 profound	 and	 notable	 as	 an	
experimental	 confirma6on	 from	 a	 laboratory	 of	 a	 theore6cal	 predic6on.	 For	
example,	 the	 discovery	 of	 a	 new	 and	 powerful	 invariant	 of	 four-dimensional	
manifolds	is	a	vindica6on	just	as	sa6sfying	as	the	discovery	of	a	new	par6cle.	

					Gregory	Moore,	“Physical	Mathema<cs	and	the	Future”	(2014)
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Gauge	theories	from	string	theory	

10-dim		=		R4 x

Superstring	theory	–	effec6ve	theory	in	4	dimensions	follows	from	
compac6fica6on	of	10-dim	string	theory	on	a	Calabi-Yau	manifold.	

(Beyond)	Standard	Model	theory

+	?



(Simple)	Calabi-Yau	threefold	

(Singular)	conifold



(Simple)	Calabi-Yau	threefold	

(Singular)	conifold

Deformed	conifold



Geometric	transi6on	

(Singular)	conifold

Deformed	conifold Resolved	conifold



Quantum	fields	from	strings	
Topological	string	theory	on	deformed	conifold	reduces	to		
Chern-Simons	topological	field	theory	on	S3,	with	SU(N)	gauge	group:	

Deformed	conifold



Quantum	fields	from	strings	
Topological	string	theory	on	deformed	conifold	reduces	to		
Chern-Simons	topological	field	theory	on	S3,	with	SU(N)	gauge	group:	

Observables	–	expecta6on	values	of	
Wilson	loops	along	a	closed	curve	K:



Quantum	fields	from	strings	
Topological	string	theory	on	deformed	conifold	reduces	to		
Chern-Simons	topological	field	theory	on	S3,	with	SU(N)	gauge	group:	
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Wilson	loops	along	a	closed	curve	K:

=	knot	(HOMFLY)	polynomials



ATer	geometric	transi6on…	

(Singular)	conifold

Deformed	conifold Resolved	conifold



ATer	geometric	transi6on…	

Resolved	conifold

ATer	embedding	topological	string	theory	in	superstrings,	in	remaining	
(space6me)	dimensions	it	reduces	to	quantum	field	theory	with		
extended	supersymmetry.	String	amplitudes	encode	proper6es	of	BPS	
states	in	this	supersymmetric	theory:

BPS	states



ATer	geometric	transi6on…	

Resolved	conifold

ATer	embedding	topological	string	theory	in	superstrings,	in	remaining	
(space6me)	dimensions	it	reduces	to	quantum	field	theory	with		
extended	supersymmetry.	String	amplitudes	encode	proper6es	of	BPS	
states	in	this	supersymmetric	theory:

BPS	states

Colored	HOMFLY	
polynomials
Knot	theory



Ooguri-Vafa	(LMOV)	invariants	

Resolved	conifold

Colored	HOMFLY	polynomials	encode	enumera6on	of	these	BPS	states:

BPS	states

Colored	HOMFLY	
polynomials
Knot	theory



BPS	states	and	quivers	

Fundamental	
BPS	states

Nodes	of	
a	quiver

Quiver	representa9on	theory

BPS	states	in	ques6on	are	in	fact	bound	states	of	certain	
fundamental	states,	described	by	quiver	representa6on	theory:



Fundamental	
BPS	states

Generators	of	
HOMFLY	homology

Nodes	of	
a	quiver

Knot	theory Quiver	representa9on	theory

BPS	states	in	ques6on	are	in	fact	bound	states	of	certain	
fundamental	states,	described	by	quiver	representa6on	theory:

BPS	states	and	quivers	



Knots-quivers	correspondence	

Generators	of	
HOMFLY	homology

Nodes	of	
a	quiver

Knot	theory Quiver	representa9on	theory
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Quiver	representa6on	theory

Consider	moduli	space	of	maps																						.	It	is	characterized	

by	mo6vic	Donaldson-Thomas	invariants:

Cd1

Cd2

Cd3

Cdi ! Cdj

⌦d1,...,dm;j 2 N
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Quiver	representa6on	theory

Consider	moduli	space	of	maps																						.	It	is	characterized	

by	mo6vic	Donaldson-Thomas	invariants:

Cd1

Cd2

Cd3

Cdi ! Cdj

⌦d1,...,dm;j 2 N

Recall,	for	a	knot:

DT

LMOV
colored	HOMFLY



Knots-quivers	correspondence
With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

2 N

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

2 N !!!2 N

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

2 N2 N

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Knots-quivers	correspondence

Note:	infinite	number	of	colored	polynomials	/	LMOV	invariants	
encoded	in	a	finite	number	of	parameters	of	a	matrix	C.

2 N2 N

With	appropriate	iden6fica6on	of	variables,	all	colored	HOMFLY	
polynomials	are	captured	by	the	mo6vic	genera6ng	func6on,	for	
some	par6cular	symmetric	matrix	C:



Example	–	trefoil	knot

Colored	polynomial	for	trefoil:

We	find:



Examples	–	torus	knots



Examples	–	62	knot



Examples	–	63	knot



Further	developments…



“Donaldson-Thomas	invariants,	torus	knots,	and	la]ce	paths”	
Miłosz	Panfil,	Marko	Stosic,	P.S.	
Phys.	Rev.	D98	(2018)	026022	

“Torus	knots	and	generalized	Schröder	paths”	
Marko	Stosic,	P.S.,	arXiv:	2405.10161

Sta6s6cs	of	la]ce	paths

For	torus	knots,	BPS	numbers	count	la]ce	paths,	which	makes	
contact	with	combinatorics	and	models	of	sta6s6cal	physics!



Other	Calabi-Yau	manifolds	

Analogous	results	arise	for	supersymmetric	theories	engineered	
by	toric	Calabi-Yau	manifolds.

“Topological	strings,	strips	and	quivers”	
M.	Panfil,	P.S.,	JHEP	1901	(2019)	124	

“Branes,	quivers	and	wave-func<ons”	
T.	Kimura,	M.	Panfil,	Y.	Sugimoto,	P.S.	

SciPost	Phys.	10	(2021)	051

Resolved	conifold



Links	with	conformal	field	theory

"Fermionic	form	of	VOA	characters”	
"Fermionic	sum	representa6ons	for	conformal	field	theory	characters”	
R.	Kadem,	T.	Klassen,	B.	McCoy,	E.	Melzer	–	Phys.	Led.	B307	(1993)	68
"Nahm	sums”	
"Conformal	field	theory	and	torsion	elements	of	the	Bloch	group”	
W.	Nahm	–	Les	Houches	School	of	Physics	(2007)
Rela9ons	to	logarithmic	conformal	field	theories	
"Characters	of	coinvariants	in	(1,p)	logarithmic	models”	
B.	Feigin,	I.	Tipunin	–	arXiv:	0805.4096	[math.QA]
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Summary
(Hopefully)	we	learnt	what	are:		
• Basic	proper6es	of	quantum	field	theories	with	

supersymmetry	and	topological	invariance	
• Geometric	transi6on	and	other	duali6es	mo6vated	by	string	

theory,	which	relate	different	quantum	field	theories	
• Mathema6cal	manifesta6on	of	such	duali6es	in	the	form	of	

knots-quivers	correspondence	
• Other	rela6ons	to	sta6s6cal	models	of	la]ce	paths,	

conformal	field	theory,	wave-func6on	behavior	for	other	
Calabi-Yau	systems,		etc.



Summary

• What	else	(in	the	spirit	of	physical	mathema<cs)	can	physics	and	
mathema6cs	learn	from	each	other?	

• The	links	to	sophis6cated	mathema6cs	arise	from	simplest	
examples	of	quantum	field	theories	–	what	would	then	arise	for	
more	complicated	and	realis6c	quantum	field	theories…?	

• What	is	quantum	field	theory?	What	is	the	space	of	such	
theories?	Is	this	an	ul6mate	formalism	to	describe	Nature?


